ta có: \(\left(a-b+c\right)^2-\left(a+b+c\right)^2\)
VT \(=\left(a-b+c\right)\left(a-b+c\right)-\left(a+b+c\right)\left(a+b+c\right)\)
\(=a^2-ab+ac-ab+b^2-bc+ac-bc+c^2-a^2-ab-ac-ab-b^2-bc-ac-c-c^2\)
= \(-4ab-4bc=VT\left(đpcm\right)\)
a ) \(\left(a-b+c\right)^2-\left(a+b+c\right)^2\)
\(=\left(a-b+c-a-b-c\right)\left(a-b+c+a+b+c\right)\)
\(=-2b\left(2a+2c\right)\)
\(=-4ab-4bc\left(đpcm\right)\)
b ) \(6,3-5x+x^2\)
\(=x^2-5x+\dfrac{63}{10}\)
\(=x^2-5x+\dfrac{25}{4}+\dfrac{1}{20}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{20}\ge\dfrac{1}{20}>0\forall x\left(đpcm\right)\)
:D