\(2x-2x^2-1\)
=\(2\left(x-x^2-\dfrac{1}{2}\right)\)
= \(2\left(-x^2+2.\dfrac{1}{2}x-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{2}\right)\)
= \(2\left[\left(-x^2+2.\dfrac{1}{2}x-\dfrac{1}{4}\right)-\dfrac{1}{4}\right]\)
=\(2\left(-x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{2}\)
= \(-2\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{2}\)
= \(\dfrac{-1}{2}-2\left(x-\dfrac{1}{2}\right)^2\)
vậy \(2x-2x^2-1< 0\) với mọi số thực x