Lời giải:
Xét:
\(\left(x^4+1\right)^5-2\left(x^4+1\right)^4+3\left(x^4+1\right)^3\)
\(=\left(x^4+1\right)^2\left(x^4+1\right)^3-2\left(x^4+1\right)\left(x^4+1\right)^3+3\left(x^4+1\right)^3\)
\(=\left(x^4+1\right)^3\left[\left(x^4+1\right)^2-2\left(x^4+1\right)+3\right]\)
Trở lại bài toán:
\(\left(x^4+1\right)^3\left[\left(x^4+1\right)^2-2\left(x^4+1\right)+3\right]:\left(x^4+1\right)^3\)
\(=\left(x^4+1\right)^2-2\left(x^4+1\right)+3\)
\(=x^8+2x^4+1-2x^4-2+3\)
\(=x^8+2>0\left(đpcm\right)\)