Gọi d là UCLN(n+1;2n+3)
Vì d là UCLN(n+1;2n+3) nên:
\(n+1⋮d\Rightarrow2\left(n+1\right)⋮d\Rightarrow2n+2⋮d\)
\(2n+3⋮d\)
Vì \(2n+2;2n+3⋮d\) nên:
\(\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(2n+3-2n-2⋮d\)
\(1⋮d\)
\(\Rightarrow\dfrac{n+1}{2n+3}\)tối giản với mọi n
b)Câu b tương tự