chứng minh rằng
3) \(\frac{sin2x-sinx}{1-cosx+cos2x}=tanx\)
4) \(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+sin^{2014}x.tan^{2014}x}\)
Chứng minh đẳng thức sau:
\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^n\) =\(\frac{sin^nx+cot^nx}{1+sin^nx.tan^nx}\)
chứng minh rằng
\(\frac{1-sinx-cos2x}{sin2x-cosx}\) = tanx
Chứng minh rằng:
\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right)cosx-1=0\), \(\forall x\in R\)
Chứng minh đẳng thức lượng giác:
\(\frac{2sin^2\frac{x}{2}+sin2x-1}{2sinx-1}+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
Phân tích thành tích
1,A= 1+ sinx+ cosx+ sin2x
2, B= 1+ 2cos 2x- sin2x
3, C= 2(sinx - cosx) - cos2x
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
Sin2x+4=8cosx+sinx
Chứng minh
a) \(\frac{1-sin2x}{1+sin2x}=cot^2\left(\frac{\pi}{4}-x\right)\)
b) \(\frac{Sin2x-2sinx}{sin2x+2sinx}=-tan^2\frac{x}{2}\)
Chứng minh: \(\dfrac{sinx}{1+cosx}+cotx=\dfrac{1}{sinx}\)