Chứng minh rằng:
a) \(\dfrac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
b) \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{2}{sinx}\)
c) \(\dfrac{1-sinx}{cosx}=\dfrac{cosx}{1+sinx}\)
d) \(\left(1-cosx\right)\left(1+cot^2x\right)=\dfrac{1}{1+cosx}\)
e) \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=sinx.cosx\)
f) \(\dfrac{1+cosx}{1+cosx}-\dfrac{1-cosx}{1+cosx}=\dfrac{4cotx}{sinx}\)
Chứng minh: \(\dfrac{sin3x+sinx}{cosx}.\left(tanx+cotx\right)=4\)
\(\dfrac{\left(sinx+cosx\right)^2-1}{cotx-sinx.cosx}=2tan^2x\)
sin^3(1+cotx)+cos^3(1+tanx)=\(\sqrt{2}\)cosx
\(2\sqrt{2}\) sin(sinx+\(\dfrac{\Pi}{4}\))=\(\dfrac{1}{sinx}\)+\(\dfrac{1}{cosx}\)
Chứng minh rằng :
\(\frac{1-cos2x}{2\left(1+cosx\right)}-\frac{2cos^2x-1}{sinx\left(1-cotx\right)}=1+sinx\)
Recall NVL.
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
chứng minh rằng
3) \(\frac{sin2x-sinx}{1-cosx+cos2x}=tanx\)
4) \(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+sin^{2014}x.tan^{2014}x}\)
1) Đơn giản biểu thức : \(A=\frac{\left(sinx+cosx\right)^2-1}{cotx-sinx.cosx}\)
2) Đơn giản biểu thức : \(N=\left(\frac{sinx+tanx}{cosx+1}\right)^2+1\)
Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)