`[16]`
`= 36^n + 19^n - 2^n . 2`
`= 36^n - 2^n + 19^n - 2^n`
Áp dụng `a^n - b^n vdots a - b forall x in RR`.
`-> 36^n - 2^n vdots 34 vdots 17`
`-> 19^n - 2^n vdots 17`.
`-> (36^n - 2^n) + (19^n - 2^n) vdots 17 ( a, b vdots n -> a +-b vdots n)`.
Có: \(6^{2n}+19^n-2^{n+1}\)
\(=36^n+19^n-2^n.2\)
\(=\left(36^n-2^n\right)+\left(19^n-2^n\right)\)
\(=34^n+17^n⋮17\left(đpcm\right)\)