Trong 4 số \(a,b,c,d\) có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số \(a,b,c,d\) nếu có 2 số cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ \(⋮4.\)
Nếu không thì 4 số dư theo thứ tự \(0,1,2,3.\)
\(\Leftrightarrow\) Trong 4 số \(a,b,c,d\) có 2 số chẵn, 2 số lẻ.
Hiệu của 2 số chẵn và 2 số lẻ trong 4 số đó \(⋮2.\)
\(\Rightarrow\) Tích trên chia hết cho 3 và 4.
Mà \(ƯCLN\left(3;4\right)=1.\)
\(\Rightarrow\left(a-b\right).\left(a-c\right).\left(b-c\right).\left(b-d\right).\left(c-d\right)⋮\left(3.4\right)=12.\)
Vậy \(\left(a-b\right).\left(a-c\right).\left(b-c\right).\left(b-d\right).\left(c-d\right)⋮12.\)
Chúc bạn học tốt!
Đặt S=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)
Trong 4 số nguyên a,b,c,d chắc chắn có 2 số chia hết cho 3 có cùng số dư =>hiệu của chúng chia hết cho 3
Nên S chia hết cho 3 (1)
Ta lại có trong 4 số nguyên a,b,c,d hoac có 2 số chẵn,2 số lẻ,chẳng hạn a,b là số chẵn và c,d là số lẻ,thế thì a-b và c-d chia hết cho 2 nên (a-b)(c-d) chia hết cho 4=> s chia hết cho 4
Hoặc nếu ko phải như trên thì trong 4 số trên tồn tại 2 số chia 4 có cùng số dư nên hiệu của chúng chia hết cho 4=>S chia hết cho 4 (2)
Từ (1) và (2) ta có S chia hết cho 3 và S chia hết cho 4 mà (3;4)=1 nên S chia hết cho 12(đpcm)