Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
cho x,y thỏa mãn xy≥1 chứng minh rằng
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
a) Chứng minh: \(2016^{2015}+2018^{2016}⋮2017\)
b) Cho x, y \(\ge\)1
Chứng minh: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho \(xy\ge1\). Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Chứng minh rằng nếu x+y=1 thì x2 + y2 \(\ge\) \(\dfrac{1}{2}\)
Mong mn giúp đỡ
Chứng minh : \(\dfrac{x^2+y^2+z^2}{3}\) \(\ge\) \(\left(\dfrac{x+y+z}{3}\right)^2\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
\(\dfrac{x^2+y^2}{z}\ge\left(\dfrac{x+y}{z}\right)^2\)
Chứng minh:
\(\dfrac{x+y}{xy}\)\(\ge\)\(\dfrac{4}{x+y}\) với \(\forall\) x,y > 0