xét hiệu
\(\dfrac{x+y}{xy}-\dfrac{4}{\left(x+y\right)}\)
<=> \(\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}-\dfrac{4xy}{xy\left(x+y\right)}\)
<=> (x+y)2 -4xy
<=> x2+y2+2xy-4xy
<=> x2+y2-2xy
<=> (x-y)2 ≥ 0 (luôn đúng )
=> đpcm
xét hiệu
\(\dfrac{x+y}{xy}-\dfrac{4}{\left(x+y\right)}\)
<=> \(\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}-\dfrac{4xy}{xy\left(x+y\right)}\)
<=> (x+y)2 -4xy
<=> x2+y2+2xy-4xy
<=> x2+y2-2xy
<=> (x-y)2 ≥ 0 (luôn đúng )
=> đpcm
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
chứng minh rằng với mọi x \(\ge\) o, y\(\ge\) 0 thì \(\left(\dfrac{x+y}{2}\right)^2\ge xy\)
cho x,y thỏa mãn xy≥1 chứng minh rằng
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Chứng minh rằng:
a) \(\dfrac{x}{y}\) + \(\dfrac{y}{z}\) + \(\dfrac{z}{x}\) với mọi x, y, z > 0
b) \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) \(\ge\) \(\dfrac{4}{x+y}\) với mọi x,y > 0
a) Chứng minh: \(2016^{2015}+2018^{2016}⋮2017\)
b) Cho x, y \(\ge\)1
Chứng minh: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Câu 1: Tìm các số thực x, y thỏa mãn:
\(x^2+2y^2+-2xy-2x-4y+10=0\)
Câu 2: Tìm x thỏa mãn BĐT:
\(\dfrac{2x-1}{2-x}>1\)
Câu 3: Chứng minh rằng với \(\forall\) x,y,z thì: \(x^2+y^2+z^2\ge xy+yz+zx\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Chứng minh rằng:
\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\left(\forall x,y,z>o\right)\)
Cho \(xy\ge1\). Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)