Chứng minh rằng với mọi giá trị của x ra luôn có : \(2x^4+1\ge2x^3+x^2\)
Chứng minh rằng với mọi giá trị của x ta luôn có:
2x4 + 1 ≤ 2x3 + x2
Chứng minh rằng: x2 - x + 1 > 0 với mọi số thực x.
Chứng minh rằng:
x2 + x + 1 > 0 với mọi x
Rút gọn biểu thức. Chứng minh rằng biểu thức rút gọn không âm vs mọi giá trị của biến thuộc tập xác định (coi a là hằng):
1 - (\(\dfrac{a+x}{ax-x^2}\) + \(\dfrac{2a+3x}{x^2-a^2}\)) : \(\dfrac{a^4-4x^4}{a^4x-a^2x^3}\)
chứng minh rằng 3x^2+1>0 với mọi x
3x^3y^2-6x^2y^3 + 9x^2y^2
5x^2y^3 -25x^3y^4 + 10x^3y^3\
CMR a. x^2 -x+1>0 với mọi x
b. x^2+2x+2>0 với mọi x
c -x^2+4x-5<0 với mọi x
Bài 2
â) Thực hiện phép tính ( 2x^3-5x^2+10x-4) : ( 2x-1)
b) Chứng minh rằng thương của phép chia trên luôn có giá trị dương với mọi giá trị của biến
Chứng minh rằng với mọi số nguyên x, y thì :
A=(x+y)(x+2y)(x+3y)(x+4y)+y^4 là số chính phương
Chứng minh rằng với mọi x, y > 0 ta có \(\frac{2}{x^2+2y^2+3}< =\frac{1}{xy+y+1}\)