x^2-x+1>0
<=> x^2-2.x.1/2+1/4-1/4+1
<=> x^2-2x.1/2+1/4+3/4 >0
<=> (x-1/2)^2 +3/4>0(luôn đúng với mọi x vì (x-1/2)^2>0 với mọi x)
vậy x^2-x+1>0 với mọi x thuộc R.
Ta có: x2 - x +1= (x2-x+\(\dfrac{1}{4}\))+\(\dfrac{3}{4}\)
= (x-\(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\)
Vì (x - \(\dfrac{1}{2}\))2 >= 0 với mọi x
nên (x - \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi x (đpcm)