\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)