Ta thực hiện : Phân tích đa thức thành nhân tử để xuất hiện đa thức chia :
Ta có : \(x^8+x+1\)
\(=\left(x^8-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)
Đến đây chỉ ra nó chia hết cho \(x^2+x+1\) rất dễ dàng.