gọi \(ƯCLN_{\left(7n+10;5n+7\right)}=d\) ta có:
\(7n+10⋮d\\ 5n+7⋮d\)
\(\Rightarrow\left(7n+10\right)-\left(5n+7\right)⋮d\\ \Rightarrow5\left(7n+10\right)-7\left(5n+7\right)⋮d\\ \Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d\inƯ_{\left(1\right)}=\left\{1;-1\right\}\)
vậy \(ƯCLN_{\left(7n+10;5n+7\right)}=\left\{1;-1\right\}\)
vậy \(\dfrac{7n+10}{5n+7}\) là phân số tối giản