Ta có thể xét hiệu : \(\dfrac{a^2+b^2}{2}-\left(\dfrac{a+b}{2}\right)^2=\dfrac{2\left(a^2+b^2\right)}{4}-\dfrac{\left(a+b\right)^2}{4}\)
\(=\dfrac{2\left(a^2+b^2\right)-\left(a^2+2ab+b^2\right)}{4}\)
\(=\dfrac{1}{4}\left(a^2-2ab+b^2\right)=\dfrac{1}{4}\left(a-b\right)^2\)
Ta thấy : \(\left(a-b\right)^2\ge0\) nên \(\dfrac{1}{4}\left(a-b\right)^2\ge0\)
Hay là : \(\dfrac{a^2+b^2}{2}-\left(\dfrac{a+b}{2}\right)^2\ge0\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
=> ĐPCM.
