§3. Tích của vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng minh rằng :

a) Nếu \(\overrightarrow{a}=\overrightarrow{b}\) thì \(m\overrightarrow{a}=m\overrightarrow{b}\)

b) Nếu \(m\overrightarrow{a}=m\overrightarrow{b}\) và \(m\ne0\) thì \(\overrightarrow{a}=\overrightarrow{b}\)

c) Nếu \(m\overrightarrow{a}=n\overrightarrow{a}\) và \(\overrightarrow{a}\ne\overrightarrow{0}\) thì \(m=n\)

Bùi Thị Vân
15 tháng 5 2017 lúc 15:16

a) Giả sử \(m\overrightarrow{a}=m\overrightarrow{b}\)
\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow m.\overrightarrow{0}=\overrightarrow{0}\) (do \(\overrightarrow{a}=\overrightarrow{b}\) )
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (luôn đúng).
Vậy điều giả sử đúng.
Ta chứng minh được:
Nếu \(\overrightarrow{a}=\overrightarrow{b}\) thì \(m\overrightarrow{a}=m\overrightarrow{b}\).
b) Có: \(m\overrightarrow{a}=m\overrightarrow{b}\)\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{0}\) (do \(m\ne0\) )
\(\Leftrightarrow\overrightarrow{a}=\overrightarrow{b}\) (đpcm).
c) Có \(m\overrightarrow{a}=n\overrightarrow{a}\Leftrightarrow m\overrightarrow{a}-n\overrightarrow{a}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}\left(m-n\right)=\overrightarrow{0}\)
\(\Leftrightarrow m-n=0\) ( do \(\overrightarrow{a}\ne0\) )
\(\Leftrightarrow m=n\) (đpcm).


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Trang Candy
Xem chi tiết
Tung Nguyễn
Xem chi tiết
Uyên Phương
Xem chi tiết
Quỳnh Hà
Xem chi tiết
Nguyễn Phi Hòa
Xem chi tiết
Phong Trần
Xem chi tiết
Tung Nguyễn
Xem chi tiết
Anxiety
Xem chi tiết