Tìm giá trị của m sao cho \(\overrightarrow{a}=m\overrightarrow{b}\) trong các trường hợp sau :
a) \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\)
b) \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\)
c) \(\overrightarrow{a},\overrightarrow{b}\) cùng hướng và \(\left|\overrightarrow{a}\right|=20;\left|\overrightarrow{b}\right|=5\)
d) \(\overrightarrow{a},\overrightarrow{b}\) ngược hướng và \(\left|\overrightarrow{a}\right|=5;\left|\overrightarrow{b}\right|=15\)
e) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}\ne\overrightarrow{0}\)
g) \(\overrightarrow{a}\ne\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
h) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
Cho ΔABC tìm tập hợp các điểm M thỏa:
a/ \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MB}\right|\)
b/ \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho hai vectơ không cùng phương \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Dựng các vectơ :
a) \(2\overrightarrow{a}+\overrightarrow{b}\)
b) \(\overrightarrow{a}-2\overrightarrow{b}\)
c) \(-\overrightarrow{a}+\dfrac{1}{2}\overrightarrow{b}\)
1Cho tam giác ABC và điểm M thõa mãn \(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AB}\)
TÌM VỊ TRÍ CỦA M
2 Cho tam giác ABC . Tập hợp điểm M thõa màn
a. \(\left|\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{BM}-\overrightarrow{BA}\right|\)
B, VÉC TƠ MA+MB-MC=MD
HELP ME PLEASE, I NEED IT NƠ, luv u
Cho hình bình hành ABCD. Đặt \(\overrightarrow{AB}=\overrightarrow{a}\); \(\overrightarrow{AD}=\overrightarrow{b}\)
Hãy tính các vecto sau theo \(\overrightarrow{a}\) và \(\overrightarrow{b}\)
a, \(\overrightarrow{DI}\) với I là trung điểm BC
b, \(\overrightarrow{AG}\) với G là trọng tâm \(\Delta CDI\)
Cho tam giác ABC. Tìm tập hợp điểm M sao cho: \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC
a) dựng các điểm I,J thoả \(2\overrightarrow{IA}+3\overrightarrow{IB}=\overrightarrow{0},\overrightarrow{JA}=2\overrightarrow{JC.}\)
Tính vecto IJ theo vectoAB,vectoAC (không cần làm)
b) gọi P,Q là trung điểm BI,CJ. Chứng minh \(\overrightarrow{PQ}=\dfrac{1}{2}\left(\overrightarrow{BJ}+\overrightarrow{IC}\right)\)
(Không cần làm)
c) gọi K thoả vectoBK=(4/7)vectoBC. CMR I,J,K thẳng hàng
Mình chỉ cần câu c thôi
Tam giác ABC có G là trọng tâm. M,N lần lượt là trung điểm của đoạn AB,BC. Lấy I,J thỏa mãn: \(\left\{{}\begin{matrix}2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\\2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\end{matrix}\right.\)
a, chứng minh M,N,J thẳng hàng
b,chứng minh J là trung điểm của IB
c,Gọi E nằm trên AB thỏa mãn \(\overrightarrow{AE}=k\overrightarrow{AB}\left(k\ne1\right)\).Xác định k để C,E,J thẳng hàng
(làm giùm mình câu c) thank nhiều
Cho ΔABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow{BH}=\dfrac{1}{3}\overrightarrow{HC}\). Điểm M di động nằm trên BC sao cho \(\overrightarrow{BM}=x\overrightarrow{BC}\). Tìm x sao cho độ dài vecto \(\overrightarrow{MA}+\overrightarrow{GC}\) đạt GTNN