\(A=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
vậy A luôn luôn dương với mọi x
b: \(B=x^2-xy+y^2\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2\)
\(=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
c: \(C=-x^2+4x-10\)
\(=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)\)
\(=-\left(x-2\right)^2-6< 0\)