a: \(a^3+b^3-a^2b-ab^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b\right)^2>=0\)
=>\(a^3+b^3>=a^2b+ab^2\)
c: \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab>=\dfrac{1}{2}\)
a: \(a^3+b^3-a^2b-ab^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b\right)^2>=0\)
=>\(a^3+b^3>=a^2b+ab^2\)
c: \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab>=\dfrac{1}{2}\)
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
B1:C/m
a)\(\dfrac{a^2+b^2}{2}\)\(>=ab\)
b)(a+b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)>=4\) (với a>0,b>0)
c)\(a\left(a+2\right)< \left(a+1\right)^2\)
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
CM BĐT:
a) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b) \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
c) \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
cho a;b;c thoă mãn là 3 số dương và abc=1
CMR:\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Chứng minh bđt:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\dfrac{9}{2}\forall a,b,c>0\)
Bài toán 1. Cho a, b, c là các số thực dương thỏa mãn $latex a+b+c=3$. Chứng minh rằng
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{\text{2}\left( {{a}^{\text{2}}}+{{b}^{2}}+{{c}^{2}} \right)}{3}\ge 5$