Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ thị như quỳnh

Chứng minh giá trị biểu thức không phụ thuộc x :

1, \(\left(2x+1\right)^3-\left(2x-1\right)^3-2\cdot\left(4x+3\right)^2+8\cdot\left(x+3\right)^2\)

2,\(\left(2x+1\right)^2\cdot\left(x-1\right)-2\cdot\left(x-2\right)^3+x\cdot\left(3-2x\right)\cdot\left(3+x\right)-\left(3x-3\right)^2\)

Nguyễn Lê Phước Thịnh
22 tháng 5 2022 lúc 1:31

1:  \(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(4x+3\right)^2+8\left(x+3\right)^2\)

\(=24x^2+2-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)

\(=24x^2+2-32x^2-48x-18+8x^2+48x+72\)

=56

2: \(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)

\(=4x^3-3x-1-2x^3+12x^2-24x+16+x\left(9-3x-2x^2\right)-\left(3x-3\right)^2\)

\(=2x^3+12x^2-27x+15+9x-3x^2-2x^3-9x^2+18x-9\)

\(=6\)


Các câu hỏi tương tự
Đỗ thị như quỳnh
Xem chi tiết
Do thi nhu quynh
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Do thi nhu quynh
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
phạm thị phương thảo
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
phạm thị phương thảo
Xem chi tiết