\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) đúng
Vậy ta có đpcm
Không chắc là đúng đâu nhé :D
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2-\frac{a+b}{2}\ge0\)
\(\Leftrightarrow2a^2+2b^2-a-b\ge0\)
\(\Leftrightarrow2a\left(a+b\right)-\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(2a-1\right)\left(a+b\right)\ge0\)
\(\Leftrightarrow2a-1\ge0\)
\(\Leftrightarrow a\ge\frac{1}{2}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng BĐT bunhiacopxki ta có:
\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2.\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Dấu " = " xảy ra <=> a=b=0,5