VP: \(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2+b^2-ab\right)=a^3+ab^2-a^2b+a^2b+b^3-ab^2\)
\(=a^3+b^3=VT\left(đpcm\right)\)
Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow VT=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(=\left(a+b\right)\left[a^2+b^2-ab\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=VP\)
Vậy ...