Ta có :
3n + 2 + 3n + 1 + 2n + 3 + 2n + 2
= 3n . 32 + 3n . 3 + 2n . 23 + 2n . 22
= 3n (32 + 3) + 2n (23 + 22)
= 3n . 12 + 2n . 12
= 12 (3n . 2n)
Mà 12 ⋮ 6 ⇒ đpcm
Ta có :
3n + 2 + 3n + 1 + 2n + 3 + 2n + 2
= 3n . 32 + 3n . 3 + 2n . 23 + 2n . 22
= 3n (32 + 3) + 2n (23 + 22)
= 3n . 12 + 2n . 12
= 12 (3n . 2n)
Mà 12 ⋮ 6 ⇒ đpcm
Chứng minh rằng:
3135.299-3136.35 chia hết cho 7
3n+2-2n+2+3n-2n chia het cho 10
3n+2+2n+3+3n+1+2n+2 chia hết cho 6
a)56.16 + 17.243 (mod 16)
b)67.32 + 34.944 (mod 31) c) 786.123 + 73.49 (mod 12) 2. Chứng minh rằng: 3 2n+1 + 5 chia hết cho 8 với mọi số tự nhiên n 3. Chứng minh rằng: n n−1 + n n−2 + n n−3 + ... + n 3 + n 2 + n chia hết cho n − 1 với mọi số tự nhiên n > 1 Giúp mình với ạ, cảm ơn!Chứng minh rằng : \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hết cho 30 với mọi n nguyên dương.
1 tìm n ∈ N để
3n + 2 chia hết n-1
n^2 + 2n + 7 chia hết n +2
2 chứng minh rằng ∀ n ∈ N thì
2^4n+2 +1 chia hết 5
7 ^4n-1 chia hết 5
3^4n+1+2 chia hết 5
Chứng minh rằng : Với mọi n nguyên dương thì \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
Chứng minh rằng:
\(3^{n+1}-2^{n+1}+\) \(3^{n-1}-2^{n-1}\) chia hết cho 10 với mọi số tự nhiên n >1
chứng minh rằng với mọi số nguyên dương n thì
\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Chứng minh rằng: Với mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10