CMR:\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}< 1\)
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
1) Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{37.38}\)và \(B=\dfrac{1}{20.38}+\dfrac{1}{21.37}+...+\dfrac{1}{38.20}\)
Chứng minh rằng \(\dfrac{A}{B}\)là 1 số nguyên
2) Tìm x,y thỏa mãn \(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|=3\)
Nhanh nha mik sắp nộp r
chứng minh rằng:
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
mình ngu toán chúng minh (hép mi)
Tính A = [1 + (1 + 2) + (1 + 2 + 3) + ..... + (1 + 2 + 3 + ..... + 98)]/(1.2 + 2.3 + 3.4 + ..... + 98.99)
Tính
\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
Tìm x biết: \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
Cho \(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(N=\frac{2016}{51}+\frac{2016}{52}+...+\frac{2016}{100}\)
CMR N chia hết cho M.