\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5..100}\)
\(=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
\(=2\left(\frac{1}{2}-\frac{1}{2.3}\right).2\left(\frac{1}{2}-\frac{1}{3.4}\right)...2\left(\frac{1}{2}-\frac{2}{99.100}\right)\)
\(=2^{89}.\left(\frac{1}{2}.98-\frac{1}{2}+\frac{1}{100}\right)\)
\(=2^{98}.\left(49-\frac{49}{100}\right)\)
= \(\frac{2^{98}.4851}{100}\)