Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho \(x;y;z>0;x+y+z=1\)

Chứng minh : \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\)

DƯƠNG PHAN KHÁNH DƯƠNG
4 tháng 5 2018 lúc 17:05

Ta có :

\(x+y+z=1\)

\(\Rightarrow\left(x+y+z\right)^2=1\)

Áp dụng BĐT Cauchy-schwar dưới dạng engel ta có :

\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\dfrac{9}{1}=9\)

Trần Quốc Lộc
4 tháng 5 2018 lúc 17:07

\(\text{Ta có : }x+y+z=1\\ \Rightarrow\left(x+y+z\right)^2=1\\ \Rightarrow x^2+y^2+z^2+2xy+2xz+2yz=1\\ \Rightarrow\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\\ =\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{x^2+2yz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{y^2+2xz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{z^2+2xy}\\ =\dfrac{x^2+2yz}{x^2+2yz}+\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}+\dfrac{y^2+2xz}{y^2+2xz}+\dfrac{z^2+2xy}{y^2+2xz}+\dfrac{x^2+2yz}{z^2+2xy}+\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{z^2+2xy}\\ =1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\)Áp dụng \(BDT:\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(\Rightarrow1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\\ \ge1+2+2+1+2+1\ge9\left(đpcm\right)\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}y^2+2xz=x^2+2yz\\z^2+2xy=x^2+2yz\\y^2+2xz=z^2+2xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2yz=x^2-2xz\\z^2-2yz=x^2-2xy\\y^2-2xy=z^2-2xz\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-2yx+z^2=x^2-2xz+z^2\\z^2-2yz+y^2=x^2-2xy+y^2\\y^2-2xy+x^2=z^2-2xz+x^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-z\right)^2=\left(x-z\right)^2\\\left(z-y\right)^2=\left(x-y\right)^2\\\left(y-x\right)^2=\left(z-x\right)^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-z=x-z\\z-y=x-y\\y-x=z-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\z=x\\y=z\end{matrix}\right.\Leftrightarrow x=y=z\\\text{Mà } x+y+z=1\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ \Leftrightarrow x=y=z=\dfrac{1}{3}\)

Vậy \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\) với \(x;y;z>0\)\(x+y+z=1\)

đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
♉ⓃⒶⓂ๖P๖S๖Pツ
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
Nguyễn Huyền Anh
Xem chi tiết
poppy Trang
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Lil Học Giỏi
Xem chi tiết