Violympic toán 9

phuc Nguyễn văn

cho x,y,z là các số dương thỏa mãn x3+y3+z3=8

tìm giá trị nhỏ nhất của biểu thức H=\(\frac{x^2+y^2}{xy\left(x+y\right)^3}+\frac{y^2+z^2}{yz\left(y+z\right)^3}+\frac{z^2+x^2}{zx\left(z+x\right)^3}\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 8:15

\(H\ge\frac{\left(x+y\right)^2}{2xy\left(x+y^3\right)}+\frac{\left(y+z\right)^2}{2yz\left(y+z\right)}+\frac{\left(z+x\right)^2}{2zx\left(z+x\right)}=\frac{1}{2xy\left(x+y\right)}+\frac{1}{2yz\left(y+z\right)}+\frac{1}{2zx\left(z+x\right)}\)

\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)}\)

Ta chứng minh BĐT phụ sau:

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Vậy BĐT phụ được chứng minh

Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right)\); \(z^3+x^3\ge zx\left(z+x\right)\)

\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{x^3+y^3+y^3+z^3+z^3+x^3}=\frac{9}{4\left(x^3+y^3+z^3\right)}=\frac{9}{32}\)

\(H_{min}=\frac{9}{32}\) khi \(x=y=z=\frac{2\sqrt{3}}{3}\)

Bình luận (4)

Các câu hỏi tương tự
Mai Tiến Đỗ
Xem chi tiết
Kakarot Songoku
Xem chi tiết
fghj
Xem chi tiết
Như Trần
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Kakarot Songoku
Xem chi tiết
le duc minh vuong
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Khởi My
Xem chi tiết