Áp dụng BĐT bunyakovsky:
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}\ge\dfrac{1}{3}\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)^2=\dfrac{1}{3}.\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right).\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)
vì x,y,z>0 ,Áp dụng BĐT cauchy:\(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\ge3\)
\(\rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{1}{3}.3\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Dấu = xảy ra khi x=y=z