\(A=\left(x+y\right)^2-2xy=25-12=13\)
\(B=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=5\left(25-18\right)=35\)
\(C=x^2-y^2\Rightarrow C^2=x^4+y^4-2x^2y^2=\left(x^2+y^2\right)^2-4x^2y^2\)
\(C^2=\left[\left(x+y\right)^2-2xy\right]^2-4\left(xy\right)^2=\left(25-12\right)^2-4.36=25\Rightarrow C=\pm5\)
\(D=\frac{x^2+y^2}{xy}=\frac{\left(x+y\right)^2-2xy}{xy}=\frac{25-12}{6}=\frac{13}{6}\)
x + y = 5 ⇔ x = 5-y
x.y =6⇔ x(5 - x)=6
⇔ -x2 + 5x - 6 = 0 ⇒\(\left\{{}\begin{matrix}x=2\Rightarrow y=3\\x=3\Rightarrow y=2\end{matrix}\right.\)
thế vô từng trường hợp