Vì x + y = 1
\(\Rightarrow\) 1 \(\ge\) xy với mọi x, y
hay (x + y)2 \(\ge\) xy
\(\Leftrightarrow\) x2 + y2 + 2xy \(\ge\) xy
\(\Leftrightarrow\) x2 + y2 \(\ge\) \(\frac{1}{2}\) (đpcm)
Chúc bn học tốt! (Ko chắc lắm)
Ta có : x + y = 1 \(\Rightarrow\) x = 1 - y
Xét \(x^2+y^2-\frac{1}{2}=\left(1-y\right)^2+y^2-\frac{1}{2}=1-2y+y^2+y^2-\frac{1}{2}\)
\(=1-2y+2y^2-\frac{1}{2}=\frac{2-4y+4y^2-1}{2}\)
\(=\frac{1-4y+4y^2}{2}=\frac{\left(1-2y\right)^2}{2}\ge0\)
\(\Rightarrow\) \(x^2+y^2-\frac{1}{2}\ge0\)
\(\Rightarrow\) \(x^2+y^2\ge\frac{1}{2}\)