K=1/(x^2+y^2)+1/2xy+1/2xy
áp dụng BĐT cauchy schwarz ta có
1/(x^2+y^2)+1/2xy>=(1+1)^2/(x+y)^2=4 (1)
2xy<=(x+y)^2/2=1/2
=>1/2xy>=2 (2)
từ (1) và (2) => Min K=6 khi x=y=1/2
K=1/(x^2+y^2)+1/2xy+1/2xy
áp dụng BĐT cauchy schwarz ta có
1/(x^2+y^2)+1/2xy>=(1+1)^2/(x+y)^2=4 (1)
2xy<=(x+y)^2/2=1/2
=>1/2xy>=2 (2)
từ (1) và (2) => Min K=6 khi x=y=1/2
Cho x,y > 0 và x + y = 1 . Tìm min của \(S=\dfrac{1}{x^2+y^2}\) + \(\dfrac{5}{xy}\)
cho x>0;y>;x+y=1. Tìm min \(H=\left(1-\dfrac{1}{x^2}\right)\left(1-\dfrac{1}{y^2}\right)\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho x+y = 1 ; x>0 ; y>0. Tìm min của :
b) \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\) ( a,b là hằng số dương đã cho )
c) \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
P/s : cần gấp :(
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Hãy tính giá trị biểu thức: A=\(\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\)
cho 3 số dương x,y,z thỏa mãn x2+y2+z2 \(\le\) 3. Tìm min của P = \(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Bài 1: Cho x+y=1 (x>0,y>0). Tìm giá trị nhỏ nhất(GTNN) của:
a. \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
b. \(\dfrac{a^2}{x}\)+\(\dfrac{b^2}{x}\)
c. (x+\(\dfrac{1}{x}\))\(^2\) +(y+\(\dfrac{1}{y}\))\(^2\)
Bài 2: Tìm GTNN của: x\(^2\)+y\(^2\)+\(\dfrac{2}{xy}\) với x,y cùng dấu
Bài 3: Cho các số dương x,y thỏa mãn: \(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\)=\(\dfrac{1}{2}\). Tìm GTNN của:
a. A=xy
b. B=x+y
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị của biểu thức : \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Tìm điều kiện của x và y để biểu thức A lớn hơn 1 :
A=\(\left(\dfrac{x}{y^2+xy}-\dfrac{x-y}{x^2+xy}\right)\) : \(\left(\dfrac{y^2}{x^3-xy^2}+\dfrac{1}{x+y}\right):\dfrac{x}{y}\)