Từ \(x^2-y=y^2-x\)\(\Rightarrow x^2-y^2+x-y=0\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
\(\Rightarrow\left(x-y\right)\left(x+y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-y=0\\x+y+1=0\end{matrix}\right.\)\(\Rightarrow x+y=-1\) (vì \(x,y\) là 2 số khác nhau)
Khi đó \(A=x^2+2xy+y^2-3x-3y\)
\(=\left(x+y\right)^2-3\left(x+y\right)=\left(-1\right)^2-3\cdot\left(-1\right)=4\)
\(x^2-y=y^2-x\\ \Leftrightarrow x^2-y^2+x-y=0\\ \Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-y=0\Rightarrow x=y\\x+y=-1\Rightarrow x=-1-y\end{matrix}\right.\)
khi đó:
\(\left[{}\begin{matrix}A=y^2+2y.y+y^2-3y-3y\\A=\left[\left(-1-y\right)+y\right]^2-3\left(-1-y+y\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}A=4y^2-6y\\A=4\end{matrix}\right.\)
đến đây thì mình chả bt trình bày sao nửa, mong bạn thông cảm