Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Văn

cho x+y=-3 và xy=-28 tính giá trị của biểu thức

a) \(x^2+y^2\) b)\(x^3+y^3\) c)\(x^4+y^4\)

 Mashiro Shiina
23 tháng 10 2017 lúc 5:48

\(\left\{{}\begin{matrix}x+y=-3\\xy=-28\end{matrix}\right.\)

Nên \(\left(x+y\right)^2=9\)

\(x^2+2xy+y^2=9\)

\(\Rightarrow x^2-56+y^2=9\)

\(\Rightarrow x^2+y^2=65\)(1)

Ta có:

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=-3\left(65+28\right)=-3.93=-279\)(2)

\(x^4+y^4=x^4+y^4+2\left(xy\right)^2-2\left(xy\right)^2\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2=65^2-18=4207\)