\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Rightarrow\left\{{}\begin{matrix}2018\left(x+\sqrt{x^2+2018}\right)=2018\left(\sqrt{y^2+2018}-y\right)\\2018\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x^2+2018}=\sqrt{y^2+2018}-y\\y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\end{matrix}\right.\)
Cộng vế với vế:
\(x+y=-x-y\Rightarrow x=-y\)
\(\Rightarrow x^{2019}=-y^{2019}\Rightarrow x^{2019}+y^{2019}=0\)