Lời giải:
Đặt \(\sqrt[3]{x}=a; \sqrt[3]{y}=b\). Bài toán trở thành:
Cho số thực dương $a,b$ thỏa mãn $a+b=2018; a^2+b^2=2019$. Tính giá trị biểu thức $A=a^3+b^3$
-------------------------------
\(\left\{\begin{matrix} a+b=2018\\ a^2+b^2=2019\end{matrix}\right.\Rightarrow ab=\frac{(a+b)^2-(a^2+b^2)}{2}=\frac{2018^2-2019}{2}\)
Áp dụng HĐT đáng nhớ:
\(A=a^3+b^3=(a+b)^3-3ab(a+b)=2018^3-3.\frac{2018^2-2019}{2}.2018\)
\(=2018^3-3(2018^2-2019).1009<0\) (vô lý vì $a,b$ dương.
Vậy không tồn tại x,y thỏa mãn ĐKĐB-> không tồn tại biểu thức A