\(P=\dfrac{x^2}{2-x^2}+\dfrac{1-x^2}{1+x^2}\)
\(P+2=\dfrac{x^2}{2-x^2}+1+\dfrac{1-x^2}{1+x^2}+1\)
\(P+2=\dfrac{2}{2-x^2}+\dfrac{2}{1+x^2}\)
\(P+2=2\cdot\left(\dfrac{1}{2-x^2}+\dfrac{1}{1+x^2}\right)\)
\(P+2\ge2\cdot\dfrac{4}{2-x^2+1+x^2}=2\cdot\dfrac{4}{3}=\dfrac{8}{3}\)(AM-GM)
\(P\ge\dfrac{2}{3}\)
\(\Rightarrow MINP=\dfrac{2}{3}\Leftrightarrow x=\dfrac{\sqrt{2}}{2}\)(thỏa đk)
x^2 =t => 0<=t<=1
\(P=\dfrac{t}{2-t}+\dfrac{1-t}{1+t}=\dfrac{2-\left(2-t\right)}{2-t}+\dfrac{2-\left(t+1\right)}{1+t}\)
\(P=\dfrac{2}{2-t}-1+\dfrac{2}{1+t}-1\)
\(\dfrac{P}{2}+1=\dfrac{1}{2-t}+\dfrac{1}{1+t}=1+t+2-t=\dfrac{3}{\left(2-t\right)\left(1+t\right)}\)
\(\dfrac{P}{2}+1=\dfrac{3}{2+t-t^2}=\dfrac{3}{2+\dfrac{1}{4}-\left(\dfrac{1}{2}-t\right)^2}=\dfrac{3}{\dfrac{9}{4}-\left(\dfrac{1}{2}-t\right)^2}\ge\dfrac{3}{\dfrac{9}{4}}=\dfrac{4}{3}\)
\(\dfrac{P}{2}+1\ge\dfrac{4}{3}\Rightarrow P\ge2\left(\dfrac{4}{3}-1\right)=\dfrac{2}{3}\)
khi \(t=\dfrac{1}{2}\Rightarrow x=\pm\sqrt{\dfrac{1}{2}}=\pm\dfrac{\sqrt{2}}{2};x\in\left[0;1\right]\Rightarrow x=\dfrac{\sqrt{2}}{2}\) thủaman
GTNN P =2/3