Lời giải:
Áp dụng BĐT AM-GM thì:
$1=\frac{3}{2}x^2+y^2+z^2+yz=\frac{3}{2}x^2+(y+z)^2-yz\geq \frac{3}{2}x^2+(y+z)^2-\frac{(y+z)^2}{4}=\frac{3}{2}x^2+\frac{3}{4}(y+z)^2$
Áp dụng BĐT Bunhiacopxky:
$P^2=(x+y+z)^2\leq [\frac{3}{2}x^2+\frac{3}{4}(y+z)^2](\frac{2}{3}+\frac{4}{3})\leq 1.2$
$\Leftrightarrow P^2\leq 2$
$\Rightarrow -\sqrt{2}\leq P\leq \sqrt{2}$
Vậy $P_{\min}=-\sqrt{2}$ tại \((x,y,z)=(\frac{-\sqrt{2}}{3};\frac{-\sqrt{2}}{3}; \frac{-\sqrt{2}}{3}) \)
$P_{\max}=\sqrt{2}$ tại \((x,y,z)=(\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})\)