Ta có:\(\frac{3}{2}x+\frac{6}{x}\ge2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng vế theo vế \(\Rightarrow A\ge19\)
"="<=>x=2;y=4
Ta có:\(\frac{3}{2}x+\frac{6}{x}\ge2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng vế theo vế \(\Rightarrow A\ge19\)
"="<=>x=2;y=4
Cho x>0 y>0 và \(x+y\le1\) Tìm GTNN của bt
\(Q=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\)
Cho y = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}\) + 1 - \(\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn y. Tìm x để y = 2
b. Cho x > 1. Chứng minh y - |y| = 0
c. Tìm GTNN của y
Cho \(0\le x\le2;0\le y\le\frac{1}{2}\).Chứng minh rằng \(\left(2x-x^2\right)\left(y-2y^2\right)\le\frac{1}{8}\)
Cho \(x,y>0\) và \(\left(x+y-1\right)^2=xy.\) Tìm GTNN của \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
Giúp tớ với mọi người :<<
1.Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức \(5x^2+6xy+2y^2+2x+2y-40=0\)
2.Giải phương trình
a) \(x^2+\left(\frac{x}{x+1}\right)^2=1\)
b) \(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
3. cho x, y dương thỏa mãn x+y=1, tìm min của biểu thức \(M=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)+5xy\)
Tìm gtnn của
A = 16x² + 2y² + \(\dfrac{2}{x}\) \(\dfrac{2}{x}\) + \(\dfrac{3}{y}\)
Biết x,y >0, 2x+y ≥ 2
Tìm gtln của
A = a\(\sqrt{3b(2a+b)}\) + \(b\sqrt{3a(2b+a)}\)
Biết a,b≥0; a²+b²=2
Tìm giá trị nhỏ nhất
a, (x,y>0 thỏa mãn xy=6)
Q= 2/x + 3/y + 6/(3x+2y)
b, ( x,y,z<1 thỏa mãn x³+y³+z³=3/(2√2) )
P= x² / √(1-x²) + y² / √(1-y²) + z² / √(1-z²)
Caau1: Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\)Tìm GTLN, GTNN của A=x+y+z
Caau2:Cho x, y, z la các số dương thỏa mãn \(x^2+y^2+z^2\le3\)Tìm GTNN của biểu thức P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Caau3: Tìm GTLN của P=\(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Caau4 TTìm GTNN của M=\(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
Cho x,y \(\ge\) 0 thỏa mãn x^2+y^2=1. Tìm gtnn \(A=\sqrt{5x+4}+\sqrt{5y+4}\)