\(x+y+z=0\)
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)
\(\Leftrightarrow x=y=z=0\)
\(\Leftrightarrow Q=-1+\left(-1\right)+\left(-1\right)=-3\)
\(x+y+z=0\)
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)
\(\Leftrightarrow x=y=z=0\)
\(\Leftrightarrow Q=-1+\left(-1\right)+\left(-1\right)=-3\)
cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho các số x,y thỏa mãn đẳng thức: x2 + xy + y2 + x - y + 1 = 0
Tính giá trị biểu thức \(M=\left(x+y\right)^{30}+\left(x+2\right)^{12}+\left(y-1\right)^{2017}\).
CMR:các biểu thức sau không phụ thuộc vào x,y,z:
\(P=\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\) Q=\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}+\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
Cho các số x,y thỏa mãn đẳng thức: x2 + xy + y2 + x - y + 1 = 0
Tính \(\left(x+y\right)^{30}+\left(x+2\right)^{12}+\left(y-1\right)^{2017}\).
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Chứng minh rằng nếu \(\dfrac{x^2-yz}{x\left(1-yz\right)}=\dfrac{y^2-xz}{y\left(1-xz\right)}\). Với \(x\ne y;xyz\ne0;yz\ne1;xz\ne1\). Thì: \(xy+xz+yz=xyz\left(x+y+z\right)\)
Cho \(x-y-z=0\)và \(xy+yz-zx=0\)
Tính P=\(\left(x+y\right)^3-\left(z-1\right)^8+2\left(x+\dfrac{1}{2}\right)^4\)
Cho ba số x y z khác 0 thoả mãn x+y+z = 2003 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2003}\).
tính giá trị biểu thức \(\left(x^3+y^3\right)\left(y^5+z^5\right)\left(x^7+z^7\right)\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)