cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho xyz=1.Tính tổng:M=\(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho x, y, z thỏa mãn: \(x+y+z=0\) và \(xy+yz+xz=0\). Tính giá trị biểu thức:
\(Q=\left(x-1\right)^{2017}+\left(y-1\right)^{2017}+\left(z-1\right)^{2017}\)
CMR:các biểu thức sau không phụ thuộc vào x,y,z:
\(P=\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\) Q=\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}+\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
cho x,y,z\(\in\)(0,1) . Chứng minh rằng :
\(\dfrac{x}{1+y+xz}\)+\(\dfrac{y}{1+z+xy}\)+\(\dfrac{z}{1+x+yz}\)\(\le\)\(\dfrac{3}{x+y+z}\)
cho x,y,z là số nguyên dương và x+y+z=1 tìm max của
\(P=\dfrac{xy}{z+1}+\dfrac{yz}{x+1}+\dfrac{xz}{y+1}\)
Cho x, y, z bất kì. Chứng minh: x^2+y^2+z^2 > zy+yz+xz