cho x + y + z = 0 và x, y, z khác 0
Tính giá trị của biểu thức: M = \(\dfrac{x^2}{x^2-y^2-z^2}+\dfrac{y^2}{y^2-z^2-x^2}+\dfrac{z^2}{z^2-x^2-y^2}\)
Cho biểu thức
A = ( x^3- 2x^(2 )+ x)/ (x^2-1)
a/Tìm điều kiện xác định và rút gọn A
b/Tìm x ∈ Z để A ∈ Z
Cho x, y, z\(\ne\)0 và x+y+z=0.Tính giá trị của biểu thức:
1/y2+z2-x2+1/x2+y2-z2+1/x2+z2-y2
Cho biểu thức
A=( \(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}:x-2+\dfrac{10-x^2}{x+1}\))
a. tìm điều kiện xác định và rút gọn
b, tính gtri của bthuc khi \(\left|x\right|\) = 1/2
c, Với giá trị nào của x thì A = 2 và A< 0
d, tìm x \(_{\in}\) Z để A \(\in\) Z
Cho x^2/x+y + y^2/y+z + z^2/z+x =2017
Tính: y^2/x+y + z^2/y+z + x^2/x+z -3
Cho A= \(\dfrac{\left(x-1\right)^2}{x}\). (1 - \(\dfrac{x^2}{x-1}\)) - \(\dfrac{6x+1}{x}\)
a. Tìm điều kiện của x để giá trị của biểu thức A xác định.
b. Rút gọn A
c. Tìm x để biểu thức A có GTLN.
Tìm điều kiện của các biến trong mỗi phân thức sau đây. Chứng minh rằng khi giá trị của phân thức xác định thì giá trị đó không phụ thuộc vào các biến x và y (nghĩa là chứng tỏ rằng có thể biến đổi phân thức đã cho thành một biểu thức không chứa x và y) :
a) \(\dfrac{x^2-y^2}{\left(x+y\right)\left(6x-6y\right)}\)
b) \(\dfrac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}\) (a là hằng số khác \(-\dfrac{3}{2}\))
Bài 1: Cho biểu thức
B = \(\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
a) Rút gọn B
b) Tìm số nguyên y để \(\dfrac{2B}{2y+3}\) có giá trị nguyên
c) Tìm số nguyên y để B lớn hơn hoặc bằng 1
Bài 2: Cho \(x+\dfrac{1}{x}=3\). Tính giá trị biểu thức
a) A = \(x^2+\dfrac{1}{x^2}\) b) B = \(x^3+\dfrac{1}{x^3}\)
Bài 3: Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=2; \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
Tính giá trị biểu thức D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
Bài 4: Cho a, b, c từng đôi một khác nhau thỏa mãn \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Tính giá trị biểu thức C = \(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Bài 5: Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2; \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Chứng minh: a + b + c = abc
Bài 1: Cho biểu thức
B = \(\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
a) Rút gọn B
b) Tìm số nguyên y để \(\dfrac{2B}{2y+3}\) có giá trị nguyên
c) Tìm số nguyên y để B lớn hơn hoặc bằng 1
Bài 2: Cho \(x+\dfrac{1}{x}=3\). Tính giá trị biểu thức
a) A = \(x^2+\dfrac{1}{x^2}\) b) B = \(x^3+\dfrac{1}{x^3}\)
Bài 3: Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=2; \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
Tính giá trị biểu thức D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
Bài 4: Cho a, b, c từng đôi một khác nhau thỏa mãn \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Tính giá trị biểu thức C = \(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Bài 5: Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2; \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Chứng minh: a + b + c = abc