a, A=\(\frac{x^3-2x^2+x}{x^2-1}=\frac{x^3-x^2-x^2+x}{x^2-1}=\frac{x^2\left(x-1\right)-x^2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x+1}\)
a, ĐKXĐ: \(x+1\ne0\)
\(\Rightarrow x\ne-1\\\)
b, Để \(A\in Z\Rightarrow x\in Z\)
\(x+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow x=\left\{0;-2\right\}\)