Cho đường tròn (O) nội tiếp hình vuông ABCD. Lấy các điểm E, F trên các cạnh BC, CD sao cho EF tiếp xúc với đường tròn (O). Gọi H, K thứ tự là giao của EF với các đường thẳng AB, AD. Gọi I là giao của HD và BC. Chứng minh rằng AI // OE
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ AD là đường kính của (O), AH vuông góc với BC tại H, BE vuông góc với AD tại E. Gọi G là giao điểm của AH với (O).
a) Chứng minh tứ giác ABHE nội tiếp và GD ∥ BC;
b) Gọi N là giao điểm giữa HE và AC. Chứng minh tam giác AHN vuông tại N;
c) Tia phân giác của góc BAC cắt đường tròn (O) tại F. Gọi M là giao điểm của OF và BC, K là trung điểm của AB, I là giao điểm của KM và HE. Chứng minh rằng AB·EI = AE·EM.
Cho tam giác ABC(AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC. Chứng minh EFDO là tứ giác nội tiếp.
Cho đường tròn (O; R) và dây MN không đi qua tâm O. Kẻ đường kính AB vuông góc với MN tại E. Lấy điểm C thuộc dây MN. BC cắt đường tròn (O;R) tại K. a) Chứng minh: Tứ giác AKCE nội tiếp b) Gọi I là giao điểm của AK và MN, D là giao điểm của AC và BI. Chứng minh C cách đều 3 cạnh của tam giác DEK
Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi F và K lần lượt là giao điểm của AH với BC, DE
a) Chứng minh: Tứ giác ADHE nội tiếp đường tròn và xác định tâm I của đường tròn.
b) Chứng minh: DB là phân giác của góc EDF và \(\dfrac{KH}{HF}=\dfrac{DK}{DF}\)
c) Đường thẳng CE cắt đường tròn tại điểm thứ hai N, NF cắt đường tròn tại điểm thứ hai P, gọi Q là trung điểm của DF. Chứng minh A, P, Q thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB<AC) hai đường BE,CF của tam giác ABC cắt nhau tại trực tâm H.Vẽ đường kính AD của (O).Gọi K là giao điểm của AH với (O) L,P lần lượt là giao điểm của BC và EF,AC và KD.CM:
1)Tứ giác EHKP nội tiếp và xác định tâm I của đường tròn này,chứng minh I thuộc BC
2)Gọi M là trung điểm của BC.Chứng minh:AH=2OM
3)Gọi T là giao điểm của (O) với đường tròn ngoại tiếp tam giác EFK.Chứng minh:L,K,T thẳng hàng
Cho tam giác ABC nhọn (AB>AC) nội tiếp (O). Hai đường cao AD và BE cắt nhau tại H. I là giao điểm của AD với đường tròn, K là giao điểm của AO với đường tròn. Chứng minh:
a) Tứ giác AEDB nội tiếp. Xác định tâm đường trong nội tiếp tứ giác AEDB
b) AD. EC= BE. DC
c) BHCK là hình bình hành
d) AB2- AC2= BI2- HC2
Cho tam giác ABC nhọn ( AB<AC) nội tiếp trong đường tròn tâm O. Gọi I là điểm thay đổi trên cạnh BC ( I khác B và C ). Qua I kẻ IH vuông góc với AB tại H và IK vuông góc với AC tại K
a) Chứng minh tứ giác AHIK nội tiếp
b) Gọi M là giao điểm của tia Ay với đường tròn ( O ) ( M khác A ). Chứng minh góc MBC = IHK.
c) Tính số đo của góc AIC khi tứ giác BHKC nội tiếp
(giải câu c hộ em à)