Lời giải:
Vì $\tan a=\frac{\sin a}{\cos a}$ xác định nên $\cos a\neq 0$. Do đó:
\(A=\frac{\sin a+\cos a}{\cos a-\sin a}=\frac{\frac{\sin a+\cos a}{\cos a}}{\frac{\cos a-\sin a}{\cos a}}=\frac{\frac{\sin a}{\cos a}+1}{1-\frac{\sin a}{\cos a}}=\frac{\tan a+1}{1-\tan a}=\frac{\frac{1}{2}+1}{1-\frac{1}{2}}=3\)