cho tan\(\alpha\)=3/4. tinh
A=\(\dfrac{sin^3\alpha+cos^3\alpha}{2\sin\alpha\times\cos^2\alpha+\cos\alpha\times\sin^2\alpha}\)
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
Cho biết \(\sin\alpha+\cos\alpha=\dfrac{4}{3}\)
Tính GTBT:
a) \(\sin\alpha.\cos\alpha\)
b) \(\sin^3\alpha+\cos^3\alpha\)
Thách bạn Nhã Doanh là trong 10' :3
Chứng minh rằng : \(\dfrac{1 + cos \alpha}{1-cos\alpha} - \dfrac{1-cos\alpha}{1+cos\alpha} = \dfrac{4cot\alpha}{sin\alpha}\)
Cho tan \(\alpha \) = \(\dfrac{1}{2}\) . Tính A = \(\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)
Cho \(\left\{{}\begin{matrix}\text{x, y, z > 0}\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\end{matrix}\right.\). Tìm \(\min\limits_P=\dfrac{1}{\alpha\text{a}+\beta b+\gamma c}+\dfrac{1}{\beta\text{a}+\gamma b+\alpha c}+\dfrac{1}{\gamma\text{a}+\alpha b+\beta c} v\text{ới} \alpha; \beta;\text{ \gamma}\in\) \(\mathbb{N}^*\)
1a, Biết sin\(\alpha\)=\(\dfrac{3}{5}\). Tính A= 5.sin2\(\alpha\)+6. cos\(\)2\(\alpha\)
b, Biết tan\(\alpha\) =\(\dfrac{5}{12}\). Tính sin\(\alpha\) và cos\(\alpha\)
bài 1
a) Biết tan \(\alpha=\sqrt{3}\) hãy tính sin \(\alpha\) , cos \(\alpha\) , cot \(\alpha\)
b) hãy tính tan\(\alpha\) biết sin\(\alpha=\dfrac{15}{17}\)
bài 2 : cho \(\alpha\) là góc nhọn bất kì. CMR biểu thức sau khong phụ thuộc vào \(\alpha\)
A = (sin \(\alpha+cos\alpha\))\(^2\) + \(\left(\sin\alpha-\cos\alpha\right)^2+2\)
1. Biết \(cotg\alpha=\dfrac{1}{5}\) . Tính \(cotg^4\alpha+sin^2\alpha-cos^2\alpha\)