Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thị Hương Ly

cho tam giác nhọn ABC, kẻ đường cao AH. gọi D, E lần lượt là hình chiếu của H trên AB, AC.

CMR:

a) AD.AB=AE.AC

b) \(\dfrac{1}{DH^2}+\dfrac{1}{EH^2}=\dfrac{2}{AH^2}+\dfrac{1}{BH^2}+\dfrac{1}{CH^2}\)

c) DE=AH.sinA

Eren
7 tháng 10 2018 lúc 21:19

Hình tự vẽ

a) \(\Delta\)ABH vuông tại H có đường cao HD

=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)

\(\Delta\)AHC vuông tại H có đường cao HE

=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)

Từ (1) và (2) => AD.AB = AE.AC (=AH2)

b) \(\Delta\)AHB vuông tại H có đường cao HD

=> \(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{BH^2}\) (Hệ thức lượng trong tam giác vuông) (3)

\(\Delta\)AHC vuông tại H có đường cao HE

=> \(\dfrac{1}{HE^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}\) (Hệ thức lượng trong tam giác vuông) (4)

Từ (3) và (4) => \(\dfrac{1}{HD^2}+\dfrac{1}{HE^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}+\dfrac{1}{AH^2}+\dfrac{1}{HB^2}=\dfrac{2}{AH^2}+\dfrac{1}{HC^2}+\dfrac{1}{HB^2}\)

c) Kẻ đường cao CM

Xét \(\Delta\)ABH và \(\Delta\)CBM có:

\(\widehat{AHB}=\widehat{CMB}\left(=90^o\right)\)

Chung \(\widehat{ABC}\)

=> \(\Delta\)ABH ~ \(\Delta\)CBM (g.g)

=> \(\dfrac{AH}{AD}=\dfrac{BC}{CM}\)

=> AH.CM = BC.AD (*)

Vì AD.AB = AE.AC (cmt)

=> \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta\)ADE và \(\Delta\)ACB có:

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Chung \(\widehat{BAC}\)

=> \(\Delta\)ADE ~ \(\Delta\)ACB (c.g.c)

=> \(\dfrac{DE}{BC}=\dfrac{AD}{AC}\)

=> DE.AC = BC.AD (**)

Từ (*) và (**) => AH.CM = DE.AC

=> \(DE=AH.\dfrac{CM}{AC}\)(I)

\(\Delta\)ACM vuông tại M => \(\sin A=\dfrac{CM}{AC}\) (II)

Từ (I) và (II) => DE = AH.sin A


Các câu hỏi tương tự
Hello mọi người
Xem chi tiết
Mai Hồng Ngọc
Xem chi tiết
ngọc linh
Xem chi tiết
Nhật Minh Nguyễn
Xem chi tiết
Đoàn Minh Huy
Xem chi tiết
N T L 9 3
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
q duc
Xem chi tiết