Xét \(\Delta\)AHC vuông tại H:
=> AC2 = HA2 + HC2
HC2 = AC2 - HA2
HC2 = 202 - 122 = 256
HC = \(\sqrt{256}\) = 16 (cm)
BC = BH + HC
BC = 5 + 16 = 21 (cm)
Xét \(\Delta\)AHB vuông tại H
=> AB2 = HA2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169
AB = \(\sqrt{169}\) = 13 (cm)
Chu vi của \(\Delta\)ABC là:
AC + CB + BA = 20 + 21 + 13
= 54 (cm)
Vậy chu vi của \(\Delta\)ABC là 54 cm.
Xét ΔΔAHC vuông tại H:
=> AC2 = HA2 + HC2
HC2 = AC2 - HA2
HC2 = 202 - 122 = 256
HC = √256256 = 16 (cm)
BC = BH + HC
BC = 5 + 16 = 21 (cm)
Xét ΔΔAHB vuông tại H
=> AB2 = HA2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169
AB = √169169 = 13 (cm)
Chu vi của ΔΔABC là:
AC + CB + BA = 20 + 21 + 13
= 54 (cm)
Vậy chu vi của ΔΔABC là 54 cm.
Xét ΔΔAHC vuông tại H:
=> AC2 = HA2 + HC2
HC2 = AC2 - HA2
HC2 = 202 - 122 = 256
HC = √256256 = 16 (cm)
BC = BH + HC
BC = 5 + 16 = 21 (cm)
Xét ΔΔAHB vuông tại H
=> AB2 = HA2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169
AB = √169169 = 13 (cm)
Chu vi của ΔΔABC là:
AC + CB + BA = 20 + 21 + 13
= 54 (cm)
Vậy chu vi của ΔΔABC là 54 cm.
∆AHB có ˆAHB=90o
Theo định lý Pytago, ta có:
AB2 = AH2 + HB2
=> AB2=122+52=169
Vậy AB = 13 (cm)
∆AHC có ˆAHC=90o
Theo định lý Pytago, ta có:
AC2 = AH2 + HC2
=> HC = AC2 - AH2 = 202 - 122 = 400 - 144 = 256
Vậy HC = 16(cm)
Ta có: BC = BH + HC = 5 + 16 = 21 (cm)
Chu vi tam giác ABC là:
AB + AC + BC = 13 + 20 + 21 = 54 (cm)