Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aurora

Cho tam giác MNP vuông tại M. vẽ trung tuyến NE. Trên tia đối của tia EN lấy điểm
F sao cho EF = EN;
a) Chứng minh ΔMEN = ΔPEF ;
b) Chứng minh FP vuông góc với MP và NP > PF;
c) Lấy một điểm I trên cạnh NP và điểm K trên đoạn MF sao cho NI = FK. Chứng minh
ba điểm I, E, K thẳng hàng.

CTV tth làm giúp đi

tthnew
31 tháng 10 2019 lúc 20:26

Mệt quáoho

M N P E F I K

a)Xét \(\Delta\)MEN và \(\Delta\)PEF có:

PE = EM (do E là trung điểm PM, vì NE là trung tuyến)

FE = EN (gt)

^FEP = ^MEN (đối đỉnh)

\(\Rightarrow\) \(\Delta\)MEN = \(\Delta\)PEF

b)Vì \(\Delta\)MEN = \(\Delta\)PEF nên ^EMN = ^EPF = 90o(hai góc tương ứng)

Do đó PF vuông góc với MP

Còn cái đoạn gì "và NP > PF;" you viết cái gì mà tôi chả hiểu nên không làm nhé!)

c)Dùng kiến thức lớp 8 cho nhanh nhé!

Từ \(\Delta\) MEN = \(\Delta\)PEF => MN = PF

Từ câu b ta có: ^FPM = ^NMP= 90o

Từ đây dễ dàng chứng minh được \(\Delta\)MPF = \(\Delta\)PMN

Do đó MF = PN => MF - FK = PN - NI

Hay KM = PI (1). Cũng từ \(\Delta\)MPF = \(\Delta\)PMN=> FM//PN

=> KM // PI (2). Từ (1) và (2) có ngay tứ giác PIMK là hình bình hành.

Mà E là trung điểm MP nên E cũng là trung điểm IK

Do đó E, I, K thẳng hàng.

P/s: Mình trình bày hơi lủng củng nhé!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Thị Hương
Xem chi tiết
Như Gia
Xem chi tiết
vũ hoàng anh
Xem chi tiết
crewmate
Xem chi tiết
văn dương nguyễn
Xem chi tiết
Trịnh Hoàng Ngọc
Xem chi tiết
Nguyễn Đạt
Xem chi tiết
Minz Ank
Xem chi tiết
Trần Ninh Anh
Xem chi tiết