a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>ΔACD vuông tại C
b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có
KC=KA
CD=AB
=>ΔKCD=ΔKAB
=>KD=KB
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>ΔACD vuông tại C
b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có
KC=KA
CD=AB
=>ΔKCD=ΔKAB
=>KD=KB
Cho tam giác ABC vuông tại A có AM là đường trung tuyến . Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a ) Chứng minh tg ACD vuông
b ) Gọi K là trung điểm AC . CM : KB = KD
c ) KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
Cho tam giác ABC vuông tại A Vẽ trung tuyến AM Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a, Chứng minh: tam giác MAB bằng tam giác MDC suy ra góc ACD vuông.
b, Gọi K là trung điểm của AC. Chứng minh KB = KC.
c, KD cắt BC tại I, KB cắt AD tại N. CM : Tam Giác KNI cân.
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) Tính AM
b) Chứng minh tam giác ABM = tam giác DCM
c) Chứng minh tam giác ACD cân
d) Gọi I là trung điểm của BM. Trên tia đối của tia IA lấy điểm K sao cho I là trung điểm của AK. KC cắt AD tại E. Cứng minh ED = \(\frac{1}{4}\) AD
Cho tam giác ABC vuông tại A. Vẽ trung truyến AM. Trên tia đối của tai AM lấy điểm D sao cho MD = MA
a, C/m: Tam giác MAB= Tam giác MDC. Suy ra góc ACD vuông
b, Gọi K là trung điểm của AC. C/m: KB=KD
c, KD cắt BC tại I, KB cắt ad tại N. C/m: Tam giác KNI cân
P/S: vẽ hộ hình mk lun nhess
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC